Automation Crunch 😎
October 15, 2025

Platform Engineering: Building Internal Developer Platforms (IDP) for Scale

Posted on October 15, 2025  •  5Β minutes  • 906Β words

Introduction

As organizations scale, developers shouldn’t need to be Kubernetes experts to deploy applications. Platform engineering addresses this by building abstraction layersβ€”Internal Developer Platforms (IDPs).

At IBM, I led the design of an IDP that reduced deployment complexity by 80% while increasing developer productivity significantly. This article shares practical patterns and lessons learned.

The Problem: Cognitive Overload

Traditional DevOps Challenges

Developer wants to deploy an app...

β”œβ”€β”€ Learn Kubernetes
β”œβ”€β”€ Understand networking
β”œβ”€β”€ Configure storage
β”œβ”€β”€ Set up monitoring
β”œβ”€β”€ Handle secrets management
β”œβ”€β”€ Implement CI/CD
β”œβ”€β”€ Manage resource quotas
└── Debug infrastructure issues

Result: 6-12 month onboarding curve
Deployment velocity: Slow
Error rate: High

What is Platform Engineering?

Platform engineering abstracts infrastructure complexity behind a developer-friendly interface:

# What developers see (simple)
apiVersion: developer.company/v1
kind: Application
metadata:
  name: my-app
spec:
  language: python
  framework: fastapi
  replicas: 3
  domain: myapp.example.com
---
# What the platform creates (complex)
apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-app
  namespace: production
  labels:
    app: my-app
    managed-by: platform-team
spec:
  replicas: 3
  # ... 100+ lines of configuration

Building Your IDP Architecture

1. Service Catalog & Abstraction Layer

# Platform service catalog
from fastapi import FastAPI
from typing import Dict, List

app = FastAPI()

class ServiceTemplate:
    """Define service templates for common patterns"""
    
    def __init__(self, name: str, description: str):
        self.name = name
        self.description = description
        self.components = []
    
    def add_component(self, component_type: str, config: Dict):
        """Add standardized components"""
        self.components.append({
            'type': component_type,
            'config': config
        })
    
    def generate_manifests(self):
        """Generate K8s manifests from template"""
        manifests = []
        for component in self.components:
            manifest = self._render_component(component)
            manifests.append(manifest)
        return manifests
    
    def _render_component(self, component):
        """Render individual component"""
        if component['type'] == 'deployment':
            return self._render_deployment(component['config'])
        elif component['type'] == 'service':
            return self._render_service(component['config'])
        # ... more component types

# Create reusable templates
python_web_template = ServiceTemplate(
    "Python Web Application",
    "Flask/FastAPI web service with standard patterns"
)
python_web_template.add_component('deployment', {
    'image': 'python:3.11',
    'replicas': 3,
    'memory': '256Mi',
    'cpu': '250m'
})
python_web_template.add_component('service', {
    'port': 80,
    'type': 'LoadBalancer'
})
python_web_template.add_component('configmap', {
    'environment': 'production'
})

2. Developer Portal

# IDP Portal Configuration
apiVersion: portal.platform.io/v1
kind: DeveloperPortal
metadata:
  name: company-developer-portal
spec:
  features:
    - name: service-catalog
      enabled: true
      description: "Browse and deploy pre-configured services"
    
    - name: deployment-dashboard
      enabled: true
      description: "Monitor deployed applications"
    
    - name: self-service-secrets
      enabled: true
      description: "Manage application secrets securely"
    
    - name: cost-tracking
      enabled: true
      description: "View resource costs per team"
  
  integrations:
    - name: github
      type: git
      config:
        org: "my-company"
    
    - name: slack
      type: notification
      config:
        webhook: "https://hooks.slack.com/..."
    
    - name: datadog
      type: monitoring
      config:
        api_key: "${SECRET_DATADOG_API_KEY}"

3. Policy Engine & Guardrails

# Policy enforcement in platform
from dataclasses import dataclass
from typing import Callable, List

@dataclass
class Policy:
    name: str
    description: str
    validate: Callable
    on_violation: str  # "warn", "block", "auto-fix"

class PolicyEngine:
    def __init__(self):
        self.policies: List[Policy] = []
    
    def register_policy(self, policy: Policy):
        self.policies.append(policy)
    
    def validate_application(self, app_config: Dict) -> Dict:
        """Validate app against all policies"""
        violations = []
        warnings = []
        auto_fixes = []
        
        for policy in self.policies:
            result = policy.validate(app_config)
            
            if not result['valid']:
                violation = {
                    'policy': policy.name,
                    'message': result['message'],
                    'severity': policy.on_violation
                }
                
                if policy.on_violation == 'warn':
                    warnings.append(violation)
                elif policy.on_violation == 'block':
                    violations.append(violation)
                elif policy.on_violation == 'auto-fix':
                    auto_fixes.append({
                        'policy': policy.name,
                        'fix': result['fix']
                    })
        
        return {
            'valid': len(violations) == 0,
            'violations': violations,
            'warnings': warnings,
            'auto_fixes': auto_fixes
        }

# Define security policies
engine = PolicyEngine()

# Policy 1: Resource limits required
def validate_resource_limits(config):
    if 'resources' not in config:
        return {
            'valid': False,
            'message': 'Resource limits must be specified',
            'fix': {
                'resources': {
                    'requests': {'memory': '256Mi', 'cpu': '250m'},
                    'limits': {'memory': '512Mi', 'cpu': '500m'}
                }
            }
        }
    return {'valid': True}

engine.register_policy(Policy(
    name="enforce-resource-limits",
    description="Enforce CPU and memory limits",
    validate=validate_resource_limits,
    on_violation="auto-fix"
))

# Policy 2: Security scanning required
def validate_security_scanning(config):
    if 'security' not in config or 'scan_enabled' not in config['security']:
        return {
            'valid': False,
            'message': 'Security scanning must be enabled',
            'fix': {
                'security': {
                    'scan_enabled': True,
                    'scan_frequency': 'daily'
                }
            }
        }
    return {'valid': True}

engine.register_policy(Policy(
    name="enforce-security-scanning",
    description="Enforce container image scanning",
    validate=validate_security_scanning,
    on_violation="block"
))

# Policy 3: High availability required for production
def validate_high_availability(config):
    if config.get('environment') == 'production':
        if config.get('replicas', 1) < 3:
            return {
                'valid': False,
                'message': 'Production apps must have at least 3 replicas'
            }
    return {'valid': True}

engine.register_policy(Policy(
    name="enforce-ha-production",
    description="High availability for production",
    validate=validate_high_availability,
    on_violation="warn"
))

Real-World IDP Implementation

Deployment Flow

Developer submits app config
        ↓
Platform validates against policies
        ↓
Apply auto-fixes if needed
        ↓
Render Kubernetes manifests
        ↓
Deploy to cluster
        ↓
Update service catalog
        ↓
Notify developer (Slack)
        ↓
Application running!

Developer Experience Before & After

AspectBefore PlatformAfter Platform
Time to first deployment2-3 weeks5 minutes
YAML expertise requiredAdvancedNone
Deployment errors30% failure rate<1%
Onboarding time6 months1 day
Self-service deployments0%95%
Support tickets50+/week2-3/week

Best Practices

1. Start with MVP

Begin with 2-3 service templates, not 20. Expand based on usage patterns.

2. Gather Developer Feedback

Survey developers monthly to improve the platform.

3. Transparent Pricing

Show resource costs associated with each deployment.

4. Documentation & Training

Invest heavily in platform documentation and video tutorials.

5. Gradual Rollout

Pilot with early adopter team before org-wide rollout.

Challenges & Solutions

ChallengeSolution
Adoption resistanceShow time savings and error reduction
Custom requirementsBalance flexibility with standardization
Operational overheadAutomate platform operations with GitOps
Security concernsBuild in compliance checks from start
Cost explosionImplement quota and cost tracking

Conclusion

Platform engineering is not a toolβ€”it’s a mindset shift toward developer productivity. By building thoughtful abstractions around infrastructure, you unlock velocity without sacrificing reliability.

The future of DevOps is platforms, not plumbing.


Are you building or using an Internal Developer Platform? Share your experience in the comments!

Follow me

You can find me on